Permaculture Principles and Ethics

Permaculture Ethics

Care of the Earth
Care of People
Setting Limits to Consumption & Population
Give Away or Re-invest Surplus

The prime directive of permaculture is to take responsibility for our own existence and that of our children.

Our work as permaculturists is to prevent energy from leaving before basic needs of the whole system are satisfied. This involves care of the earth, care of people, distribution of surplus and setting limits on consumption and population.

Cooperation, not competition is the very basis of future survival for existing life systems.

Mollison Permaculture Principles

Observation – Use protracted and thoughtful observation of natural system rather than protracted and thoughtless labor.

Resource – Any energy storage which assists yield. The work of the permaculture designer is to maximize useful energy storage in any system, be it the house, livelihood, urban or rural landscape.

The Problem is the Solution - We are the problem, we are the solution. In permaculture the focus is on turning constraints into resources.

Pollution Is An Unused Resource – If resources are added beyond the capacity of the system to productively use them, the system becomes disordered and goes into chaos. Imbalances may occur as a result. Ex. Too much grey water or too much fertilizer can result in nutrient overload, thus nutrients can become inaccessible to plants.

System Yield – The sum total of surplus energy produced by, stored, conserved, reused or converted by the design. Energy is in surplus once the system itself has available all it needs for growth, reproduction and maintenance.

Biological Resources - Living things reproduce and build up their availability over time assisted by their interaction with other compatible elements. Use and preserve biological intelligence. Ex. Integrated Pest Management, including wildlife, bees, birds, worms, bacteria, ducks, chickens, pigs, cows, spiders, frogs etc. Create a plan to allow them to do what they do naturally to aid in the fertility and maintenance of the land thus decreasing the human and technological work load.

Use Onsite Resources- Determine what resources are available and what resources are entering the system on their own and maximize their use. Ex. Keeping water on site and reusing as much as possible with ponds, grey water, retaining rainwater from roofs and surface runoff. Maximize the use of sun, wind, people, biological resources etc.

One Calorie In/One Calorie Out – The sun runs all life processes. A finite amount of growth can occur in a given season. As we export trees, grass clippings, “weeds”, animals (cattle & sheep for meat) we are essentially “mining” our soil of minerals. We need to grow crops to replace the minerals and nutrients exported during harvest. Ex. Grow soil, Compost organic material, learn life cycle of imported materials. Keep as much biomass on the site as possible.

Energy Recycling- Yields from a system are designed to supply for onsite needs and/or needs of the local bioregion.

Law of Return – What ever we take we must return. Every object must provide for its replacement. Maintaining cycles=sustainability
Every Element Supports Many Functions. – How many functions can we get from every element we include in our plans? Choose each element in a system and place it so that it performs as many functions as possible. Ex. A pond provides cooling, supports ducks, fish and aquatic plants, thus creating a richer habitat. It also catches rainfall, which can be used for irrigation, fire protection or domestic household water. The clay dug from the pond can be used for building structures such as buildings, walls, benches, ovens and plaster finishes. A berry hedge serves as food, fence, wildlife and domestic animal forage as well as pollen for bees to make honey.

Every Function is Supported By Many Elements – Planned redundancy will ensure that all important functions will be met despite the failure of one or more elements. Ex. Polycultural crops, diverse energy sources, diverse livelihoods.

Relative Location – Recognize connections. Locate elements relationally. Maximize relationships among components. Components placed in a system are viewed relatively, not in isolation. Ex. Location of trees can provide windbreaks; Pond location for cooling, fire protection or irrigation.

Diversity – As sustainable systems mature, they become increasingly diverse over time. The number of elements is not as important as the functional relationships between them.

Local Focus – “Think Globally, Act Locally” Grow food, save seed, support local economy, cooperate with neighbors.

Stacking – Finding the balance of various elements so that one element doesn’t overpower others over time. How much of an element needs to be produced in order to fulfill the need of the whole system? More isn’t always better. Ex. Over stocking of fish results in smaller harvest.

Succession of Evolution – Recognize that certain elements prepare the way for the system to support other elements in the future. Ex. Preparing soil for cover crops. Work in the dimension of time.

The yield of a system is Theoretically Unlimited – The only limit on the number of uses of a resource possible is the limit of the information and imagination of the designer.

Work Within Nature – Aiding the natural cycles results in higher yield and less work. A little support goes a long way.

Edge – Optimize Edge. Edges or Eco-tones are areas where two ecosystems come together to form a third which has more diversity and fertility than either of the other two. Ex. Edges of ponds, forests, meadows. Etc.

Make Least Change for Greatest Effect – The less change that is created the less embedded or embodied energy is used to create the system.

Planting Strategy – 1st native plants, 2nd proven exotics, 3rd unproved exotics on small scale with lots of observation.

Small Scale Intensive Systems – Start small and create a system that is manageable and produces high yield. When you start small your “mistakes” or “learning curve” has less impact on the environment.

Relinquishing Power – The roll of a successful design is to create a self-managed system.

Everything Gardens: All organisms manipulate their environment to their benefit.
Appropriate Technology – What is appropriate in one context may not be so in another. Permaculture principals apply for energy efficiency, cooking, lighting, transport, heating, sewage treatment, water delivery and other energy needs.

Holmgren Permaculture Principles

Observe and Interact – Beauty is in the eye of the beholder

Catch and Store Energy – Make hay while the sun shines

Obtain a Yield – You can’t work on an empty stomach

Apply Self-regulation and Accept Feedback – the sins of the father are visited on the children unto the seventh generation.

Use and Value Renewable Resources and Services – Let Nature take its’ course.

Produce No Waste – A stich in time saves nine. Waste not want not.

Design from Patterns to Details - Can’t see the woods for the trees

Integrate Rather than Segregate - Many hands make light work.

Use Small and Slow Solutions - The bigger they are the harder they fall. Slow and steady wins the race.

Use and Value Diversity - Don’t put all your eggs in one basket.

Use Edges and Value the Marginal - Don’t think you are on the right track just because it is a well-beaten path.

Creatively Use and Respond to Change - Vision is not seeing things as they are but as they will be.